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The quantitative measurement of language complexity has witnessed a recent rise of interest,
not least because language complexities reflect the learning constraints and pressures that shape
languages over historical and evolutionary time. Here, an information-theoretic account of mea-
suring language complexity is presented. Based on the entropy of word frequency distributions
in parallel text samples, the complexities of overall 646 languages are estimated. A large-scale
finding of this analysis is that languages just above the equator exhibit lower complexity than
languages further away from the equator. This geo-spatial pattern is here referred to as the
Low-Complexity-Belt (LCB). The statistical significance of the positive latitude/complexity re-
lationship is assessed in a linear regression and a linear mixed-effects regression, suggesting
that the pattern holds between different families and areas, but not within different families and
areas. The lack of systematic within-family effects is taken as potential evidence for a phyloge-
netically “deep” explanation. The pressures shaping language complexities probably pre-date
the expansion of language families from their proto-languages. Large-scale prehistoric contact
around the equator is tentatively given as a possible factor involved in the evolution of the LCB.

1. Introduction

Languages are cultural “tools” shaped to successfully transmit information. Due
to different pathways and pressures of cultural evolution, they can differ widely
with regards to their exact structural characteristics. In this context, there has
been a rise of interest in the description, measurement and modelling of language
complexity (Sampson, Gil, & Trudgill, 2009; Dahl, 2004; Newmeyer & Preston,
2014; Trudgill, 2011; Baerman, Brown, Corbett, et al., 2015).

This contribution focuses on information-theoretic complexities (Ehret &
Szmrecsanyi, in press; Juola, 2008, 1998), and their implications for the evolu-
tionary pressures that have shaped languages. Information-theoretic complexity is
here defined with reference to the distribution of word tokens over word types -
often called lexical diversity. It is measured across 1155 parallel texts - i.e. trans-
lations of the same content - into 885 different languages (see Section 2).



Imagine a language that uses a single word type over and over again, thus hav-
ing minimum information-theoretic complexity. The word type effectively tells us
nothing about the meaning encoded. In contrast, a language using a new word type
for any conceivable meaning has maximal information-theoretic complexity. That
is, every word type is exactly paired with one meaning, and is hence maximally
informative.

Note that “complexity” can here be interpreted in two different senses: namely
as learning difficulty and as information encoding potential. A minimum com-
plexity language is extremely easy to learn, but meaningless. A maximum com-
plexity language is hard (or impossible) to learn, but meaningful. The evolution-
ary trade-off between these two aspects of information encoding has been mod-
elled computationally, and tested experimentally (Kirby, Cornish, & Smith, 2008;
Kirby, Tamariz, Cornish, & Smith, 2015; Berdicevskis, 2012; Berdicevskis &
Semenuks, in press). Human languages range in between these extremes (Bentz,
Verkerk, Kiela, Hill, & Buttery, 2015), falling on a limited spectrum between min-
imum and maximum complexity. This has far-reaching implications. Minimum
and maximum complexities of languages reflect the limits of human learning ca-
pacities, and the distribution of complexities across languages gives us a window
into the interplay of language learning, usage and linguistic structure on historical
and evolutionary timescales.

This study illustrates a systematic geo-spatial pattern relating to information-
theoretic complexities across languages of the world. Namely, languages close
to the equator have systematically lower information theoretic complexity than
languages further away from the equator - given constant content of texts. This
phenomenon is called the Low-Complexity-Belt (LCB), and is illustrated in Sec-
tion 3.1. Its statistical significance is tested in Section 3.2. Moreover, it is shown
that though the pattern holds between language families and areas, there are dif-
ferences within families and areas (Section 3.3).

Finally, it is argued that the presence of between-family correlations - and the
absence of reliable within-family correlations - suggest that the LCB is a phe-
nomenon with a “deep” phylogenetic explanation. Prehistoric language contact
is given as a promising candidate for explaining the evolution of the LCB (Sec-
tion 4).

2. Materials and methods

2.1. Parallel corpora

The parallel corpora used here come from the Universal Declaration of Human
Rights (UDHR) in unicode,a the Parallel Bible Corpus (PBC),b and the European

ahp://www.unicode.org/udhr/
b(Mayer & Cysouw, 2014), http://paralleltext.info/data/



Parliament Corpus (EPC).c These add up to an overall sample of around 200
million words, 1529 texts, and 1050 languages (i.e. unique ISO-639-3 codes).

Each text is tokenized by using an algorithm that splits strings of unicode
characters on non-alphanumeric characters (i.e. white spaces, punctuation, special
characters, etc.).d The resulting tokens are then added up to the frequency per
unique type. For example, the word type right occurs 33 times in the English
UDHR. Note that this process does not involve lemmatization or stemming, i.e.
right and rights are counted as two separate types here.

2.2. Estimating entropies

For each text the information-theoretic complexity is then calculated as the en-
tropy of the distribution of word tokens over word types. The classic Shannon
entropy (Shannon & Weaver, 1949) is defined as

H = −K
r∑

i=1

pi log2(pi). (1)

WhereK is a positive constant determining the unit of measurement (which is bits
for K=1 and log to the base 2), r is the number of ranks (or different word types)
in a word frequency distribution, and pi is the probability of occurrence of a word
of ith rank. According to the maximum likelihood account, the probability pi is
simply the frequency of a type divided by the overall number of tokens in a text.
However, it has been shown that the maximum likelihood method is somewhat
unreliable, especially for small texts (Hausser & Strimmer, 2009; Nemenman,
Shafee, & Bialek, 2001). To estimate entropies reliably, the James-Stein shrinkage
estimator (Hausser & Strimmer, 2009) is used here instead.

Moreover, texts are taken from three different corpora (UDHR, PBC, EPC)
with vastly differing average numbers of tokens (ca. 2K, ca. 10K, ca. 7M), which
can additionally bias the estimation of entropy values. To reduce this bias, entropy
values are centered and scaled per corpus.

Finally, information on latitudes and longitudes per language, as well as infor-
mation on language stocks (i.e. language families) and language areas, is taken
from the AUTOTYP database (Bickel & Nichols, 1999). Merging the scaled en-
tropy values per language (i.e. ISO code) with AUTOTYP information reduces
the sample to 1422 texts of 646 languages.

c(Koehn, 2005), http://www.statmt.org/europarl/
dNote that in the PBC - due to careful automated processing and manual double-checking - word

types are reliably delimited by white spaces. This makes tokenization fairly robust across many dif-
ferent scripts. The UDHR and the EPC texts have not yet been pre-processed this way. This means
they are more prone to errors when splitting strings of characters into word types, especially when
problematic characters such as the apostrophe or tone numbers are involved.



3. Results

3.1. The Low-Complexity-Belt

In Figure 1 entropy values are plotted on a world map using the latitudes and
longitudes from the AUTOTYP database. In a) the size of dots reflects entropy
values, and their colour reflects family membership. Visual inspection reveals
that texts of languages located just above the equator (0 ◦ to ca. 30 ◦ north) are
systematically represented by smaller dots, i.e. lower entropy. This is even more
apparent in b), where the longitude is replaced by scaled entropy (and all dots are
of the same size now). A loess smoother (black line) again indicates that texts of
languages falling on the “belt” between the equator and a latitude of 30 ◦ north
have systematically lower entropies, with the lowest point at 15 ◦ north. The
statistical significance of this pattern is assessed in the following subsections.
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Figure 1. The LCB on a world map. a) World map with scaled entropy values (dots) for 1422
texts (646 languages). The size of dots reflects the scaled entropy. The colour of dots reflects selected
language areas: African-Savannah (red), Mesoamerica (green), Oceania (blue), and all others (purple).
The LCB is indicated by grey dashed lines at a latitude of 30 ◦ north and 0 ◦ (i.e. the equator).
The core belt is at around 15 ◦ north (red dashed line). b) Cross-section with the x-axis reflecting
scaled entropy values, and the y-axis representing latitude. A loess smoother with confidence intervals
(black line with grey areas) is overlaid to illustrate the systematically lower entropy values around
15 ◦ north.

3.2. Simple regressions

3.2.1. Individual languages

If the LCB is an empirical phenomenon that does not derive from random fluctua-
tions in entropies, then the distance from the core of the belt should be a significant



predictor of entropy values: bigger distance from latitude 15 ◦ north should pre-
dict higher entropies.

This is tested in a simple linear regression model run in R (R Core Team,
2013), with scaled entropies per text as dependent variable, and distance from
15 ◦ north as predictor variable. Homoscedasticity, linearity and normality of
residuals are checked visually. In this model the positive association is highly
significant (β = 0.023, p < 2.2e−16, R2 = 0.10),e with distance from 15 ◦ north
explaining 10% of the variance in scaled entropies (see also Figure 2).
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Figure 2. Entropy and distance from the LCB. a) Scaled entropy values (y-axis) for 1422 texts (646
languages) as a function of the distance from 15 ◦ north (x-axis). Note that 0 does not indicate the
equator here, but distance from 15 ◦ north. The positive trend is indicated by a linear regression line
with 95% confidence intervals (blue line with grey areas). b) Mean scaled entropy values and mean
distances for 140 families. c) Mean scaled entropy values and mean distances for 23 areas.

3.2.2. Mean entropies per family and area

The significant positive association might be driven by specific language families
and areas, rather than being a pattern holding across different families and areas.
A way to test this is to use mean entropy and mean distance values per family
and area, rather than individual languages. This method is illustrated in Figure 2,
panels b) and c).

ep < 2.2e−16 is the smallest p-value that R reports, i.e. effectively 0.



This time, two simple linear regression models are fitted, with mean en-
tropies per family and area as dependent variables, as well as mean distance from
15 ◦ north per family and area as predictors. The β-coefficients for both regres-
sions per families (β = 0.026) and areas (β = 0.027) are very similar to the
original one (0.023). Note that only for families the positive coefficient is sig-
nificant (p = 0.0004, R2 = 0.08), for areas it is not (p = 0.06, R2 = 0.12).
The non-significance of this p-value is certainly related to the drastic reduction of
sample size from originally 1422 texts to just 23 areas. However, the positive β-
coefficients still indicate that the pattern holds both across different families and
across different areas.

3.3. Mixed-effects regression

If the positive association between distance from the core of the LCB and scaled
entropies holds between different families and areas, does it also hold within dif-
ferent families and areas? To further assess this, we can fit linear mixed-effects
models (Baayen, Davidson, & Bates, 2008; Jaeger, Graff, Croft, & Pontillo, 2011;
Winter, 2013) with distance from 15 ◦ north as fixed effect, and family, area, text
type and ISO codef as random effects.

A “maximal” model according to Barr, Levy, Scheepers, and Tily (2013) is
fitted with package lme4 (Bates, Maechler, & Bolker, 2012) in R. This is a model
with random slopes and intercepts per family, area and text type, and random
intercepts for ISO codes.g Again, linearity, homoscedasticity and normality of
residuals are checked visually.

It turns out in a likelihood ratio test that this model is not significantly bet-
ter than a null model without the fixed effect (distance from the LCB) (χ2(13) =
2.45, p = 0.12). This means that when adjusting for idiosyncratic variation within
families, areas, text types and languages, the positive association between distance
from 15 ◦ north and scaled entropy vanishes. In other words, though this associa-
tion holds between families and areas, it does not hold within families and areas.h

A visual way of illustrating this is to plot data points for families and areas
separately, as seen in Figure 3. Here, it is apparent that though the positive rela-
tionship holds for Benue-Congo languages, it does not hold - and is even inverted
- for Austronesian and Indo-European languages.

f“Text type” here refers to whether the text is from the PBC, UDHR or EPC. ISO codes have to be
included as random effects since there are sometimes multiple texts per ISO code and it is conceivable
that there is within-language variation.

gFor ISO codes only random intercepts make sense, since entropy values can only vary for constant
distances, and distances can only vary for constant entropies

hNote that this is not due to different slopes (i.e. coefficients) per text type, since they are all
positive if we look at the PBC, UDHR and EPC separately.
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Figure 3. The entropy/latitude relationship for different language families. Scatterplots facetted by
the biggest language families (with more than 50 members): Austronesian (red), Benue-Congo (green),
and Indo-European (blue). Linear regression lines with 95% confidence intervals (lines with transpar-
ent areas) are overlaid.

4. Discussion

Languages falling inside the Low-Complexity-Belt, spanning an area from the
equator to ca. 30 ◦ north, have significantly lower entropies than languages north
and south of them. This pattern is strongly significant in a simple regression model
across 1422 texts and 646 languages, and it also holds (with reduced significance)
for average values of 140 language families and 23 areas. However, it does not
hold if slopes and intercepts per families, areas, texts and languages (random ef-
fects) are adjusted. Hence, whatever causally explains the positive relationship
between latitude and information-theoretic complexity, it is an effect that seems
to work at the between-family and between-area level, but is strongly weakened
at the within-family and within-area level.

A possible explanation for this could be that the effect had an impact in prehis-
tory on proto-languages of modern day language families, before they started to
fan out into different branches and wider areas, explaining the between-family and
between-area variation. As the effect started to cease or change in recent history,
it left no systematic traces at the within-family and within-area level.

4.1. Language contact

A potential effect on complexity that has been proposed in the literature is the
proportion of non-native adults (L2 speakers) learning a language, i.e. language
contact. Lupyan and Dale (2010) illustrated that morphological complexity is
linked with population sizes in a sample of more than 2000 languages. Population
size was here taken as an approximation for language contact. Bentz and Winter
(2013) tested this hypothesis more explicitely with regards to nominal case mor-
phology and L2 speaker ratios. Furthermore, a direct link between L2 speaker
proportions and entropy (as lexical diversity measure) was established recently



(Bentz et al., 2015). Namely, languages with higher proportions of L2 speakers
tend to be those with lower entropies. Potential mechanisms of entropy reduction
by means of imperfect learning were elicited in a series of iterated learning exper-
iments (Kirby et al., 2008, 2015; Berdicevskis, 2012; Berdicevskis & Semenuks,
in press).

4.2. Deep phylogenetic signals of complexity

Based on these findings, it is conceivable that areas and families that contribute
most to the LCB are those that had the biggest potential in terms of language
contact in human prehistory. This makes sense, for instance, for the Benue-Congo
family in the African Savannah (and South Africa). It is known as a “deep” family,
with migrations and language contact in its early history, such as the Bantu expan-
sion 3000 BC (Pereltsvaig, 2012, p.118). It might be worth considering similar
scenarios for languages in Mesoamerica and Oceania. Interestingly, it was shown
that entropies in Bantu languages, as well as Austronesian and Indo-European
languages, have relatively strong “phylogenetic signals”, meaning that they fol-
low closely the evolution reconstructed from cognate data (Bentz et al., 2015). In
other words, entropies of extant languages are “conservative”. They reflect the
situation of the past, going back to the roots of the language families several thou-
sand years ago. This suggests that the pressures of the deep phylogenetic past -
such as early language contact - might still be reflected in language complexities
of today, even if the pressure has ceased to be relevant in recent history.

5. Conclusions

Languages tend to have lower information-theoretic complexity closer to the equa-
tor (15 ◦ north more precisely). This pattern is statistically strongly significant,
and requires explanation. The differences in significance, relating to variation
within and between families and areas, suggest that the effect causing this pattern
might work at deep timescales. Language contact was here proposed as a possi-
ble explanation. It is attested as a factor driving lower morphological complexity
and lower information-theoretic complexity in large-scale statistical studies, and
tested in the lab via iterated learning experiments. However, further studies are
necessary to illustrate comprehensively the link between latitude and higher lan-
guage contact at different time depths. If this link is confirmed, it would constitute
important evidence for explaining the evolution and diversity of human languages.
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Dahl, Ö. (2004). The growth and maintenance of linguistic complexity. John
Benjamins Publishing.

Ehret, K., & Szmrecsanyi, B. (in press). An information-theoretic approach to
assess linguistic complexity. In R. Baechler & G. Seiler (Eds.), Complexity
and isolation. Berlin: de Gruyter.

Hausser, J., & Strimmer, K. (2009). Entropy inference and the james-stein estima-
tor, with application to nonlinear gene association networks. The Journal of
Machine Learning Research, 10, 1469–1484.

Jaeger, T. F., Graff, P., Croft, W., & Pontillo, D. (2011). Mixed effect models for
genetic and areal dependencies in linguistic typology. Linguistic Typology,
15, 281–320. doi: 10.1515/LITY.2011.021

Juola, P. (1998). Measuring linguistic complexity: The morphological tier. Jour-
nal of Quantitative Linguistics, 5(3), 206–213.

Juola, P. (2008). Assessing linguistic complexity. In M. Miestamo, K. Sinnemäki,
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